Chemistry Optional Syllabus UPSC

Chemistry Optional Syllabus

Chemistry Optional Paper 1 Syllabus

1. Atomic Structure: 

Heisenberg’s uncertainty principle, Schrodinger wave equation (time independent); Interpretation of wave function, particle in one-dimensional box, quantum numbers, hydrogen atom wave functions; Shapes of s, p and orbital. 


2. Chemical Bonding: 

Ionic bond, characteristics of ionic compounds, lattice energy, Born-Haber cycle; covalent bond and its general characteristics, polarities of bonds in molecules and their dipole moments; Valence bond theory, concept of resonance and resonance energy; Molecular orbital theory (LCAO method); bonding in H2+, H2, He2+ to Ne2, NO, CO, HF, and CN–; Comparison of valence bond and molecular orbital theories, bond order, bond strength and bond length. 


3. Solid State: 

Crystal systems; Designation of crystal faces, lattice structures and unit cell; Bragg’s law; X-ray diffraction by crystals; Close packing, radius ratio rules, calculation of some limiting radius ratio values; Structures of NaCl, ZnS, CsCl and CaF2; Stoichiometric and nonstoichiometric defects, impurity defects, semi-conductors. 


4. The Gaseous State and Transport Phenomenon: 

Equation of state for real gases, inter-molecular interactions and critical phenomena and liquefaction of gases, Maxwell’s distribution of speeds, intermolecular collisions, collisions on the wall and effusion; Thermal conductivity and viscosity of ideal gases. 


5. Liquid State: 

Kelvin equation; Surface tension and surface energy, wetting and contact angle, interfacial tension and capillary action. 


6. Thermodynamics: 

Work, heat and internal energy; first law of thermodynamics. 

Second law of thermodynamics; entropy as a state function, entropy changes in various processes, entropy– reversibility and irreversibility, Free energy functions; Thermodynamic equation of state; Maxwell relations; Temperature, volume and pressure dependence of U, H, A, G, Cp and Cvá and â; J-T effect and inversion temperature; criteria for equilibrium, relation between equilibrium constant and thermodynamic quantities; Nernst heat theorem, introductory idea of third law of thermodynamics. 


7. Phase Equilibria and Solutions: 

Clausius-Clapeyron equation; phase diagram for a pure substance; phase equilibria in binary systems, partially miscible liquids–upper and lower critical solution temperatures; partial molar quantities, their significance and determination; excess thermodynamic functions and their determination. 


8. Electrochemistry: 

Debye-Huckel theory of strong electrolytes and Debye-Huckel limiting Law for various equilibrium and transport properties. Galvanic cells, concentration cells; electrochemical series, measurement of e.m.f. of cells and its applications fuel cells and batteries. 

Processes at electrodes; double layer at the interface; rate of charge transfer, current density; over-potential; electro-analytical techniques: Polarography, amperometry, ion selective electrodes and their uses. 


9. Chemical Kinetics: 

Differential and integral rate equations for zeroth, first, second and fractional order reactions; Rate equations involving reverse, parallel, consecutive and chain reactions; branching chain and explosions; effect of temperature and pressure on rate constant; Study of fast reactions by stopflow and relaxation methods; Collisions and transition state theories. 


10. Photochemistry: 

Absorption of light; decay of excited state by different routes; photochemical reactions between hydrogen and halogens and their quantum yields. 


11. Surface Phenomena and Catalysis: 

Absorption from gases and solutions on solid adsorbents, Langmuir and B.E.T. adsorption isotherms; determination of surface area, characteristics and mechanism of reaction on heterogeneous catalysts. 


12. Bio-inorganic Chemistry: 

Metal ions in biological systems and their role in ion transport across the membranes (molecular mechanism), oxygen-uptake proteins, cytochromes and ferredoxins. 


13. Coordination Compounds: 

(i) Bonding theories of metal complexes; Valence bond theory, crystal field theory and its modifications; applications of theories in the explanation of magnetism and electronic spectra of metal complexes. 

(ii) Isomerism in coordination compounds; IUPAC nomenclature of coordination compounds; stereochemistry of complexes with 4 and 6 coordination numbers; chelate effect and polynuclear complexes; trans effect and its theories; kinetics of substitution reactions in square-planer complexes; thermodynamic and kinetic stability of complexes. 

(iii) EAN rule, Synthesis structure and reactivity of metal carbonyls; carboxylate anions, carbonyl hydrides and metal nitrosyl compounds. 

(iv) Complexes with aromatic systems, synthesis, structure and bonding in metal olefin complexes, alkyne complexes and cyclopentadienyl complexes; coordinative unsaturation, oxidative addition reactions, insertion reactions, fluxional molecules and their characterization; Compounds with metal-metal bonds and metal atom clusters. 


14. Main Group Chemistry: 

Boranes, borazines, phosphazenes and cyclic phosphazene, silicates and silicones, Interhalogen compounds; Sulphur – nitrogen compounds, noble gas compounds. 


15. General Chemistry of ‘f’ Block Elements: 

Lanthanides and actinides; separation, oxidation states, magnetic and spectral properties; lanthanide contraction.


Chemistry Optional Paper 2 Syllabus

1. Delocalised Covalent Bonding: 

Aromaticity, anti-aromaticity; annulenes, azulenes, tropolones, fulvenes, sydnones. 


2. (i) Reaction Mechanisms: General methods (both kinetic and non-kinetic) of study of mechanism of organic reactions: isotopic method, cross-over experiment, intermediate trapping, stereochemistry; energy of activation; thermodynamic control and kinetic control of reactions. 

(ii) Reactive Intermediates: Generation, geometry, stability and reactions of carbonium ions and carbanions, free radicals, carbenes, benzynes and nitrenes. 

(iii) Substitution Reactions: SN1, SN2 and SNi mechanisms; neighbouring group participation; electrophilic and nucleophilic reactions of aromatic compounds including heterocyclic compounds–pyrrole, furan, thiophene and indole. 

(iv) Elimination Reactions: E1, E2 and E1cb mechanisms; orientation in E2 reactions–Saytzeff and Hoffmann; pyrolytic syn elimination – Chugaev and Cope eliminations. 

(v) Addition Reactions: Electrophilic addition to C=C and C=C; nucleophilic addition to C=0, C=N, conjugated olefins and carbonyls. 

(vi) Reactions and Rearrangements: (a) Pinacol-pinacolone, Hoffmann, Beckmann, Baeyer–Villiger, Favorskii, Fries, Claisen, Cope, Stevens and Wagner-Meerwein rearrangements. (b) Aldol condensation, Claisen condensation, Dieckmann, Perkin, Knoevenagel, Witting, Clemmensen, Wolff-Kishner, Cannizzaro and von Richter reactions; Stobbe, benzoin and acyloin condensations; Fischer indole synthesis, Skraup synthesis, Bischler-Napieralski, Sandmeyer, Reimer-Tiemann and Reformatsky reactions. 


3. Pericyclic Reactions: Classification and examples; Woodward-Hoffmann rules – electrocyclic reactions, cycloaddition reactions [2+2 and 4+2] and sigmatropic shifts [1, 3; 3, 3 and 1, 5] FMO approach. 


4. (i) Preparation and Properties of Polymers: Organic polymers–polyethy-lene, polystyrene, polyvinyl chloride, teflon, nylon, terylene, synthetic and natural rubber. (ii) Biopolymers: Structure of proteins, DNA and RNA. 


5. Synthetic Uses of Reagents: 

OsO4, HIO4, CrO3, Pb(OAc)4, SeO2, NBS, B2H6, Na-Liquid NH3, LiAlH4, NaBH4, n-BuLi and MCPBA. 


6. Photochemistry: Photochemical reactions of simple organic compounds, excited and ground states, singlet and triplet states, Norrish-Type I and Type II reactions. 


7. Spectroscopy: Principle and applications in structure elucidation: 

(i) Rotational: Diatomic molecules; isotopic substitution and rotational constants. 

(ii) Vibrational: Diatomic molecules, linear triatomic molecules, specific frequencies of functional groups in polyatomic molecules. 

(iii) Electronic: Singlet and triplet states; n Ï€* and Ï€ Ï€* transitions; application to conjugated double bonds and conjugated carbonyls– Woodward-Fieser rules; Charge transfer spectra. 

(iv) Nuclear Magnetic Resonance (1H NMR): Basic principle; chemical shift and spin-spin interaction and coupling constants. 

(v) Mass Spectrometry: Parent peak, base peak, metastable peak, McLafferty rearrangement.

Post a Comment

0 Comments